
Starting with PICmicro
controllers

The contents of this document is copied with permission from Wouter van Ooijen from
http://www.voti.nl/swp/index.html. Wouter van Ooijen is in no way responsable for any errors
that might have been added in the conversion from HTML to SDML.

This document was formatted using DECdocument on OpenVMS. Conversion from Postscript to
PDF was done using Ghostscript on OpenVMS.

The HTML to SDML conversion and generation of this PDF file was done by Jan-Erik Söderholm,
S:t Anna Data, Söderköping, Sweden. Any thoughts about this PDF file can be sent to
jan-erik.soderholm@telia.com.

(C) 2002 Wouter van Ooijen (wouter@voti.nl)

Contents

Preface v

Chapter 1 Audience

1.1 What’s in a name . 1–2
1.2 Are you sure? . 1–2
1.3 Are you really sure? . 1–2

Chapter 2 Select a PIC

2.1 Select a language . 2–4
2.2 Select a programmer . 2–5
2.3 Buy a PIC . 2–8
2.4 Clock options . 2–8

Chapter 3 Using your PIC

3.1 Breadboard and other hardware . 3–1
3.2 The PIC architecture . 3–2
3.3 Your first program . 3–10
3.4 16x84 to 16F628 . 3–10

Chapter 4 Tips and pitfalls

4.1 OTP / Windowed PICs . 4–1
4.2 IO . 4–1
4.3 Assembly . 4–3
4.4 Documentation . 4–4
4.5 Hardware . 4–4
4.6 Various . 4–5

iii

Chapter 5 DIP Pinouts

5.1 8-pin SDIP PIC’s . 5–1
5.2 18-pin SDIP PIC’s . 5–2
5.3 28-pin SDIP PIC’s . 5–3
5.4 40-pin WDIP PIC’s . 5–4

Chapter 6 Links and references

6.1 Searching . 6–1
6.2 Manufacturers . 6–1
6.3 Assemblers . 6–2
6.4 C compilers . 6–2
6.5 Other compilers and interpreters . 6–3
6.6 Where to buy PICs etc . 6–3
6.7 Where to get answers for your PIC questions . 6–4
6.8 Some free programmer designs . 6–5
6.9 Some commercial programmers . 6–5
6.10 Other things I found useful . 6–6

Index

Tables
3–1 Constructing a target address . 3–3
3–2 Direct v.s Inderect addressing . 3–4
3–3 Diadic (two-operand) arithmetic instructions . 3–6
3–4 Monadic (one-operand) instructions . 3–7
3–5 Move instructions . 3–7
3–6 Clear instructions . 3–7
3–7 Bit set/clear instructions . 3–8
3–8 Bit test-and-skip instructions . 3–8
3–9 Inc- and Dec-and-skip instructions . 3–8

iv

Preface

Last change: 14-OCT-2002. The latest version of this document can be found at
http://www.voti.nl/swp.

Unaltered duplication is allowed. Translations require approval of the author, which will
most likely be granted if the quality of the translation is adequate.

This is not a fool’s guide: fools are much more fool than I am clever, and fools should not
program PICs (nor anything else) anyway.

I don’t accept any responsibility for errors in this text or the consequences thereof, but I
appreciate constructive comments.

This document is still under construction: you will find some remarks in square brackets []
where I plan to write additional text.

v

Chapter 1

Audience

So you think you want to start using PIC microcontrollers? Read on! This page will offer
advice on how to proceed.

Writing this page I had to make some assumptions about you, otherwise the number of
options would be even larger than it is now. So if you do not match the description below, some
information might be irrelevant to you, and some recommendations might not be appropriate.
Be your own judge.

This page is intended for someone who

• wants to start using PIC microcontrollers but has no prior experience in microcontrollers

• has more time than money (typical situation for a hobbyist or small-scale professional

• is more interested in experimenting and building prototypes than in assembling large
series

• has (at least) basic knowledge of both electronics and programming

Note that I do not assume a master’s degree in electronics or programming. But on the elec-
tronics side understanding the basic working of a resistor, capacitor, diode, LED, transistor
etc., and being able to apply at least Ohm’s law are mandatory. On the programming site
you should have some programming experience, so terms like variable, assignment, if, while,
call, goto and return ring a bell.

Starting with PICs requires you to make a lot of choices. This document tries to help you
doing so, sometimes by making a strong suggestion, but always - I hope - by providing you
the information you need to make the right decision for your particular situation.

If all you want is a list of pre-cooked advices don’t read on, just ask on comp.arch.embedded
or any other forum and you will get all possible combinations of advices, just pic one ;)

Audience 1–1

1.1 What’s in a name
A long, long time ago (when computer chips died when a cat came near on a dry day) General
Instruments produced a chip called the PIC1650, described as a Programmable Intelligent
Computer. This chip is the mother of all PIC chips, functionally close to the current 16C54.
It was intended as a peripheral for their CP1600 microprocessor. Maybe that is why most
people think PIC stands for Peripheral Interface Controller. As far as I know Microchip has
never used PIC as an abbreviation, just as PIC. And recently Microchip has started calling its
PICs microcontrollers PICmicro MCU’s. Maybe they heard that PIC sounds like the Dutch
word for dick and wanted to spare me the frowns from Dutch readers.

1.2 Are you sure?
But first let’s take two steps back. You think you want to start using microcontrollers? I hope
you realize what you are up to. It is surprisingly easy to use a microcontroller to perform
some nice tricks like flashing a LED, or even controlling a simple robot. But these simple
tricks will wet your appetite for more complex applications, and then the big struggle will
start. On the hardware side microcontrollers are powerful and complex chips, so you will
are up to some serious reading, especially of the data sheet of the chip you will be using.
I know the 200+ pages of a 16F877 data sheet look intimidating, but you will have to bite
that bullet some time. And when you have finished that document there is still the midrange
reference manual at almost 700 pages! On the software side things can get quite complex too,
especially if you want to do more than one thing at the same time. Programming is difficult,
and microcontroller programming (beyond the blink-a-LED level) even more.

When all you ever want to do is blink a few LEDs, switch some relais etc. you might be better
off with an environment that hides the ugly hardware details (and most of the power!) from
you, like a BASIC Stamp, essentially a PIC or SX chip with a BASIC interpreter. If so, get a
Stamp and put this document aside until you are in for more.

1.3 Are you really sure?
When you have decided to use a microcontroller the next step is to decide which one. This
page is about PICs, but you should at least be aware that other options exist, like the Motorola
68HC, Atmel AVR, and the 8051 in all its varieties from various manufacturers. There are
firm proponents of each of these microcontroller families, and probably for good reasons.
Asking ’what chip should I choose’ on an appropriate internet newsgroup will give you an
idea of how religious this issue is to some people.

Criteria that you can take into account when choosing a microcontroller (family) are:

• availability

• price

• ease of use (as a start consider only controllers with flash memory that can be programmed
in-circuit

• quality and price of development tools

• support from friends, neighbors, clubs, newsgroups, mailing lists

• availability of application notes, reference designs, hobbyist web pages

1–2 Audience

• features of the chip (IO pins, UART, A/D, D/A, counters, speed, code size, data size, etc.)

• ease of migrating to smaller (cheaper) or larger (more capable) chips.

Personally I started with PICs and have not looked into the other ones much. Motorola’s
68HC family is often used for somewhat more complex tasks than PICs, but tends to be more
difficult to buy. The smaller AVR’s are much like the PICs in price and performance. (Hence
PIC-or-AVR debates tend to be very hot.) There are so many 8051 clones around that it is
difficult to say something in general about this family.

OK, so you have not been scared away and are firmly decided to start using PICs. May you
live in interesting times, and never say I did not warn you!

Audience 1–3

Chapter 2

Select a PIC

So which PIC should you choose to start with? A few years ago this question was easy to
answer: the 16F84 (or, before that chip was available, the now discontinued 16c84). These
were the only affordable flash PICs and hence THE hobbyist PICs. You will still find lots of
designs in electronics magazines and on the internet using these chips.

But recently Microchip has broadened its offering of flash chips with types that are much
more attractive. In my opinion three of these are prime candidates to be ’my first PIC’: the
16F628, the 16F877 and the 18F452.

The 16F628 is somewhat cheaper than the old 16F84, has twice the code size, much more
RAM, a UART and some more goodies. This is the chip for simple applications.

The 16F877 is around twice the price of the old 16F84, but is has eight times the code size,
much more RAM, much more I/O pins, a UART, A/D converter and a lot more. Unless your
budget is very tight I would recommend the 16F877 as your first buy, otherwise you should
consider the 16F628. The 16F84A (the 16F84 - without A - and the 16c84 are obsolete) should
be used only to build an existing design that you do not want to modify.

The 18F452 is part of the new (16-bit core) series of PICs. It offers an instruction set that is
much improved over the 14-bit (16F) PICs, improved peripherals, twice the code space and
twice the speed compared to the 16F877, at a price that is only marginally higher.

I recently found a reason to prefer a 16F628 over a 16F877 or 18F452 for a particular
application: the 16F628 provides a clock option where one external resistor, which carries only
DC, determines the clock frequency. The 16F87x PICs provide the option to determine the
clock frequency with an external resistor + capacitor, but in that case both components carry
AC and practical capacitor values are very small so stray capacitance can have a big influence
on the frequency. With the 16F628 it is very practical to let a potentiometer determine the
speed of the PIC, which is not advisable for a 16F877.

The table below compares some PICs that can be interesting.

Select a PIC 2–1

chip package I/O code/data EEPROM peripherals MIPS US$ remarks

12C509 sdip 8 6 1k/41 - osc 1 1.80 OTP

12F629 sdip 8 6 1k/64 128 osc 5 1.60 cheap

12F675 sdip 8 6 1k/64 128 a/d, osc 5 1.90

16C84 sdip 18 13 1k/38 64 - 2.5 - discontinued

16F84 sdip 18 13 1k/68 64 6.00 2.5 - obsolete

16F84A sdip 18 13 1k/38 64 - 5 4.70 obsolete

16F628 sdip 18 16 2k/224 128 d/a, uart, osc 5 3.50 3d choice

16F870 sdip 28 22 2k/128 64 a/d, uart 5 5.00

16F871 wdip 40 33 2k/128 64 a/d, uart 5 5.90

16F872 sdip 28 22 2k/128 64 a/d, mssp 5 4.00

16F873 sdip 28 22 4k/192 128 a/d, uart 5 7.00

16F874 wdip 40 33 4k/192 128 a/d, uart 5 7.50

16F876 sdip 28 22 8k/368 256 a/d, mssp 5 8.20

16F877 wdip 40 33 8k/368 256 a/d, mssp 5 9.50 2nd choice

18F242 sdip 28 34 8k/512 256 a/d, mssp 10 8.30

18F252 sdip 28 34 16k/1536 256 a/d, mssp 10 9.00

18F442 wdip 40 34 8k/512 256 a/d, mssp 10 9.00

18F452 wdip 40 34 16k/1536 256 a/d, mssp 10 10.00 1st choice

SX18 sdip 20 12 2k/136 - osc 50 4.00 discontinued

SX28 sdip 28 20 2k/136 - osc 50/75 4.40

SX48 TQFP 48 36 4k/262 - osc 50 7.40 no DIP

SX52 PQFP 52 40 4k/262 - osc 50 7.40 no DIP

The price is of course an indication only, but you should be able to get a single chip for the
indicated price (excluding taxes and shipping). Both the absolute and relative prices will vary
between sources.

The 12C509 is still popular for hacking pay-TV or game consoles, but its role as small and
cheap PIC has been taken over by the 12F629. Note that a 16C509 can be programmed
only once (OTP), so you must use an expensive 12C509JW (and an EPROM eraser) for
development.

The 12F629 and 12F675 are very cheap 8-pin chips, suitable for projects that do not need
the larger amount of code space, data space, I/O pins, peripherals, etc. which are present on
the larger (and more expensive) chips. But I do not recommend these chips for a beginner
because the code space and I/O pins of the larger chips make debugging much easier.

2–2 Select a PIC

The 16C84 was the first re-programmable PIC. It was (and still is) featured in many designs
on web pages and in magazines. The 16C84 has long been superseded by the 16F84 and the
16F84A. Except for existing designs or to use existing documentation these chips should be
avoided: the 16F628 offers more memory for a lower price, in the same pinout.

The 16F628 can be considered the next-generation 16F84, because it is pin-compatible with
those older chips. But note that it is not fully software compatible. The 16F628 also has a
smaller cousin, the 16F627 (1k code instead of 2k, not shown in the table). The 16F627 does
not seem to be an attractive chip as the prices I found were actually a little higher than for
the 16F628.

With 8K code space and 34 I/O pins the 16F877 is the largest chip of the 16F87x family, The
16F876 comes in a smaller package with less (IO) pins. It is about the same price as a 16F877,
so it is interesting only when the larger package of the 16F877 is a problem. The 16F873
and 16F874 have less resources and use a more cumbersome RAM address mapping to be
compatible with older (non-flash) PICs. The 16F870 and 16F871 have even less resources but
use the same RAM addressing as the 16F877. Note that the 16F877 and 16F876 both have
a UART (for asynchronous serial communication) and an MSSP (for SPI and I2C), while the
smaller chips have only a UART. The 16F872 is a 16F870 but with an MSSP instead of a
UART.

The 18F chips are new family of PICs, with an instruction set that is much improved over
the 16F chips, with more peripherals, and more code and data space. Yet the price of the 18F
chips is only marginally higher than the comparable 16F87x chips. There are variations of
the 18F chips (not shown in the table) that have an integrated CAN controller - nice when
you want to create a network of PIC chips.

If you can’t make sense of the Microchip part numbering you are not the only one. These are
the only patterns that I have found:

• The prefix 12 is for chips with 8 pins.

• The prefix 16 is for 12-bit and 14-bit core chips with more than 8 pins.

• The prefix 18 is for 16-bit core chips.

• Next the letter C is for EPROM (OTP or windowed) chips, except for the 16C84 that has
EEPROM, which is (for a user) almost the same as flash.

• The letter F is for flash chips.

• Windowed EPROM chips have a JW suffix.

For some of the chips mentioned in the table Microchip has released improved versions,
identified by appending an A to the type. Such A chips are in most aspects identical to their
non-A predecessors (but it does not harm to check the data sheets or the ’migration’ document),
except that the programming algorithm often changed. Hence you can buy and use an A chip
if it is available (they are often slightly cheaper), but check that your programmer explicitly
supports the A version. Note: The 16F84A uses the same programming algorithm as the
16F84, but the A chip can run at up to 20 MHz, the non-A only up to 10 MHz.

The SX PIC clones are interesting because they provide MUCH more computing power than
the Microchip PICs. On the downside the SX’es do not provide much peripherals (only a
comparator and a timer), so you will need those MIPS to implement what the manufacturer
call virtual peripherals. This is a nice and powerful concept, but not suited to a beginner.

Select a PIC 2–3

So what chip should you choose to start with? As said before, first check which chips you can
actually buy. Then consider whether you want to use an existing design or other document.
In that case the choice has been narrowed down for you. If you already have a programmer,
check which chips it supports. For the choice I recommend that you take the most powerful
chip that still fulfills the above constraints. The 18F452 (the largest chip of the 18F family)
would be the first choice, the 16F877 (the largest chip of the 16F87x family) the next, and
the 16F628 the last.

Once you have acquired some experience with your first PIC, and you have a nice project
debugged and running, it might be the right time to fit it into a cheaper PIC.

2.1 Select a language
A discussion about choosing a microcontroller might create a lively discussion on the ap-
propriate newsgroups, but the next choice is sure to raise an outright flame war: which
programming language should you use? I will not attempt to answer this question for you
(the answer depends on too many factors), I will just give some criteria and present some
alternatives.

Criteria that can be taken into account when choosing a language:

• which languages do you know (but beware that C for a microcontroller might not exactly
be the ANSI-C you are used to on a desktop system)

• price of the tool

• quality of the tool

• quality of the tool documentation

• support for the tool (vendor, mailing list, newsgroups)

• ease of writing (a high level language is definitely easier to write in than assembler)

• availability of useful libraries

• effective use of the microcontrollers resources

The last issue (effective use of resources) can start a flame war on its own: the famous C-
versus-assembler war (for C you can substitute your own favorite language). As often in such
a case the answer depends a lot on the application. My opinion is:

• An assembler programmer can, given sufficient time, always make his program smaller,
faster, etc. than a programmer that uses C or another high level language.

• Given insufficient time the reverse is true. (If you are a professional programmer: When
was the last time you were given enough time to write an application? If so you are
probably in an industry where the size of a production run is measured in the thousands,
if not more.)

My conclusion is that for a product that will be made in large numbers assembler should be
used and for a a product that is produces in smaller numbers a high level language. But
that leaves the question open how large or small the series must be, and it leaves a large
gray area. A good middle road is often to use a high level language for most of your code and
inline assembly for the parts that are very time-critical.

2–4 Select a PIC

Microchip provides MPLAB, a free assembler programming environment. Even when you do
not want to use assembler you should get MPLAB, if only for the build-in simulator. Various
companies sell C compilers for PICs. The prices range from moderate (below $100) to out-of-
the-question (at least for a hobbyist: around $1000). I have not used any of these compilers
extensively, so I cannot make a recommendation.

Before you start asking around: no, there is no GCC port for PICs, and it is not likely that
one will ever exist. The assumptions made by GCC about the target CPU architecture are
reasonable for almost all CPU’s that can be found in the world (including AVR, 8051 and
68HC microcontrollers), but definitely not for PICs. There is at least one attempt to create a
free C compiler for PICs (based on SDCC), but at this moment (2002) no useable product is
available.

High-Tech C provides PICC-Lite, a free demo version of their compiler. PICC-Lite targets the
16F627, 16C84, 16F84, and 16F84A only. It can be used with a 16F628, but only for 1K of
code (half the capacity of the chip).

BKD provides a free demo version for their CC5X, which can generate up to 1K instructions
for all PIC types. This might be interesting to hobbyists, but be aware that CC5X is not
exactly an ANSI-C compiler.

Bytecraft provides a demo version of their C compiler. This demo produces only a listing, so
you can not use it to translate an application, but it might be useful to see how C constructs
are translated to PIC assembly.

I provide the Jal compiler. Jal looks more like Pascal or Ada than C. I think Jal is a very
good tool to start (and continue!) using PIC microcontrollers, but you can hardly expect me
to be objective about my own creation.

So, which language should you choose? Sorry, I can’t decide this one for you. Like for all
choices, if you have an individual or group near you that can help you, it is not a bad choice
to select the same tools. Otherwise the right choice depends a lot on your programming
experience. If you have experience in a single language, you might select a PIC language that
resembles it. If you don’t have prior programming experience: There are people who advice
assembler as the best choice to start programming, but personally I would definitely suggest
a High Level Language. Or even better: forget PICs for a while and start programming on a
PC, using the parallel port to interface to ’the real world’.

2.2 Select a programmer
This is yet another issue that can start a flame war, partly because there are so many options:

• There are flash and EPROM PICs,

• There are 2 different ways to program a PIC: serial (used by nearly all PICs, and parallel
(used only by some older non-flash types,

• 2 different ways to put a PIC in programming mode (HVP and LVP),

• One alternative to an external programmer (self-programming using a bootloader),

• At least two ways to interface to your PC: serial and parallel, and USB is emerging as a
third option,

• In-circuit and ex-circuit programmers,

Select a PIC 2–5

• Production programmers and prototype programmers.

• You can either build your own programmer or buy one.

• The SX PIC clones are programmed in an entirely different way.

When you start using PICs you should use only flash-based PICs. Flash PICs can be re-
programmed quickly, if needed without taking them from the circuit. The programming time
depends (among other things) on the size of the program, but even the largest chips can be
programmed in about 30 seconds. EPROM-based PICs come in two versions: cheap OTPs
(One Time Programmable) chips for production, and more expensive windowed (/JW) chips
that can be erased using a UV EPROM eraser. Development using windowed chips is slow
and tedious: erasing requires that the chip is removed from the circuit, put in the eraser,
and erasing can take 20 minutes. Then you have to put the chip back in the target circuit
and hope that you still know what you were trying to do. A professional can invest in a set
of windowed chips and an eraser that can erase the whole set in one go, but for a hobbyist
the high price of windowed chips makes this unattractive.

A PIC programmer puts the target PIC in programming mode and then uses the programming
interface pins to enter the program into the target. The PICs that are most interesting to
hobbyists use two pins (RB6 and RB7) to enter the program into the PIC (serial programming).
Some older PICs used a lot of pins to enter the program (parallel programming). Nearly all
low-cost programmer designs support serial programming only.

There are two ways to put a PIC into programming mode:

• a high voltage (around 14V) on the MCLR pin, this is called HVP (High Voltage
Programming)

• a logical one on the LVP enable pin (RB3 or RB4) during a reset (Low Voltage Program-
ming)

All PICs support HVP, only a few support LVP. But the newer PICs that are most interesting
to hobbyist (16F62x, 16F87x, 18Fxxx) all support LVP (but note that the 12Fxxx, 16C84,
16F84 and 16F84A do not).

LVP is both a blessing and a curse. The blessing is that it can be used with very simple
programmer hardware and a single 5V supply. A typical LVP programmer uses one HCT
buffer IC and interfaces to the parallel port. The curse is that the LVP enable pin (RB3, RB4
or RB5, depending on the particular PIC) is dedicated to the LVP enable function and can
not be used by the application. For a new design this would not be a big issue (A 16F877 or
18F452 has 33 IO pins, which is more than adequate for most applications) if the pin was not
in the middle of an 8-bit port (port B), which is on some PICs the only 8-pit port available.
And for existing designs LVP is not possible when the LVP pin is used in the design. LVP can
be disabled by changing a particular bit in the PICs configuration word. This bit can only be
changed using HVP programming. A freshly bought chip has LVP enabled. Personally I do
not use LVP.

Within the HVP programming a distinction can be made between the flash PICs and the
(older) EPROM PICs. The EPROM PICs use the high voltage to power the EPROM writing,
so the high voltage must be able to deliver a substantial current. Flash PICs use the high
voltage only to enable the writing (a high voltage source is generated internally), so the high
voltage can have a high impedance (needs to supply only a very low current). Hence some
HVP programmers can handle flash PICs, but not EPROM PICs.

2–6 Select a PIC

Microchip makes a distinction between a production programmer and a prototype program-
mer. A production programmer must be able to verify the correct programming (by reading
the code back) at the low and high extreme of the Vcc expected in the application. This is sup-
posed to catch the occasional PIC that is not programmed (or erased) perfectly. I have heard
that such imperfect programming occurs maybe one in a thousand cases. Hence the produc-
tion/prototype distinction between is not very important for hobbyists and for development,
but for production it is a small price to pay to avoid an occasional problem.

In a pinch you can use most prototype programmers for an occasional production programming
by using a variable power supply, manually setting the power supply to the expected extremes
and verifying the correct programming.

Some of the newest PICs (16F87x) can program themselves. This makes it possible to
eliminate the need for a programmer: the PC communicates with a small program in the
target chip, this so-called bootloader writes the application in the (remainder of) the targets
memory and starts the application. No high voltage required, no dedicated LVP pin. But
there are - of course - some disadvantages too:

• you must program the bootloader into the chip before you can use it

• the bootloader takes away some memory (typically 256 instructions)

• some hardware is required to interface the chip to the PC, and this interfacing uses PIC
pins

• at reset there must be some way to choose between starting the application or starting
the bootloader

• an application can be incompatible with a bootloader (for instance because the application
insist on using the same code space)

Most bootloader communicate using the PICs UART and the serial port of the PC. These
bootloaders are small (256 instructions), but use the two hardwired UART pins (RC6 and
RC7) that might be needed by the application for other purposes.

My WLoader bootloader uses programmed (bit-banged) serial communication via a single pin
(RE3) which is less likely to be required for other purposes (and can be changed easily). The
disadvantage is that WLoader is much larger (1k instructions).

Programmers (including bootloaders) must interface to a PC. Typically a parallel or serial
port is used. There is no big advantage in using either one except for the availability of a
free port on your PC.

On the PC software is required to drive the programmer. Most programmer software accesses
the serial or parallel port directly, which is not possible or very slow under some windows
versions (NT, XP).

There are lots of so-called ’zero parts’ serial port programmers that are not actually zero parts
but can consist of nothing more than single resistor. These HVP flash-only programmers use
the RS-232 levels on the serial port directly to program the target PIC. This can work, and
when it does it is surely an easy way to program your first PIC (for instance to put a bootloader
in it). These programmers use the RS-232 signals directly to put the chip into programming
mode. This requires about 14V, provided by two RS-232 signals. Most serial ports provide -5
.. +12 (because those voltages are available from a standard PC power supply), but laptops

Select a PIC 2–7

for instance often provide much less. The RS-232 specification requires at least -5.. +5 Volt,
which is not enough to put the PIC into programming mode.

The SX chips can not be programmed using a PIC programmer. There are very few (free) SX
programmer designs on the web.

So what programmer should you build or buy? When you are not sure how serious your
involvement with PICs will be I suggest that you start with a 16F877 or 18F452 and a
bootloader. You can either

• find someone who can program a bootloader into the PIC for you

• build a ’zero-parts’ serial port programmer and use it to program a bootloader into a PIC

• buy yourself a 16F877 from me with WLoader.

If you have little money and a lot of time you could try one of the almost-no-components serial
or parallel port programmers. When you are certain that you will program quite a few PICs
it is time to select a real programmer.

I definitely recommend selecting one that can do HVP in-circuit programming and allows to
program and run the application without touching the hardware (no switch etc.), but this still
leaves a lot of choices. My favorite is of course my own Wisp628 programmer, mainly because
it allows you to talk to your application over the same serial line you used for programming.

If you have more money to spend the Warp13 or even Microchip’s PicStart+ might be
attractive.

2.3 Buy a PIC
Now where can you buy the PIC chip of your choice? If you are a lucky guy your local
electronics shop might have them in stock. For the rest of us mail order will probably be the
only alternative. Most big mail-order companies carry a long list of PICs and there are lots
of small-scale web shops that sell PICs (http://www.voti.nl/shop) mine for instance). At the
end of this document you can find some links.

There are actually a number of variations of each PIC: different temperature ranges,
packages, maximum clock, low power version, etc. For hobbyists I recommend the standard
(commercial) temperature range, DIP (or 28 pin skinny DIP) package, standard power (low
power chips have a lower maximum clock), and the maximum clock frequency (4 MHz versions
are a little bit cheaper but the difference is too small to be interesting). Hence for a 16F877
the full designation is 16F877-20/P, for an 28 pins PIC the designation is for instance 16F876-
20/SP (SP = Skinny diP).

2.4 Clock options
A PIC has a number of clock options. For most PICs the options are:

• HS: high-speed crystal (4 .. 20 MHz)

• XT: medium-speed crystal (200 kHz .. 4 MHz)

• LP: low-power 32768 Hz .. 200 kHz watch-style crystal

• RC: (external) capacitor + resistor

2–8 Select a PIC

Instead of a crystal a (cheaper) ceramic resonator can be used. The HS, XT or LP options can
also be used with an externally generated clock, connected to OSC1. Note that for a 4 MHz
crystal either the XT or HS setting can be used.

When a crystal or resonator is used two capacitors are required, from each of the OSC pins
to GND. The value depends on the frequency. I use 20 pF for 4, 10, and 20 MHz. 3-pin
resonators have build-in capacitors. It is advised to keep the leads from these capacitors to
the GND pin short. (This makes me wonder why Microchip has on most PICs placed the OSC
pins next to the VCC, and the GND on the other side.)

Some PICs have other clock options:

• The 16F62x, 12Fxxx 12C509 provide an INTRC mode that generates an internal clock of
approximately 4 MHz. One or both of the pins that are normally used for the crystal can
be configured for IO. This is especially important on the 8-pin chips which would - when
an external crystal and reset were used - have only 4 IO pins left.

• The 16F628 has an ER mode where an external resistor and an internal capacitor
determine the clock. This mode has the big advantage over the RC mode that the
external resistor carries only a DC current, so long leads can be used (for instance to
a front-mounted potentiometer) without problems.

• The 18Fxxx chips provide a PLL setting which generates an internal clock of four times
the external (crystal controlled) clock. This can be used to get a 40 MHz internal clock,
with only a 10 MHz crystal (note: A 40 MHz crystal is not supported).

The internal and external RC clocks have an (in) accuracy of a few %. This is adequate for
flash-a-LED applications, but either not or just barely for more timing-critical things like
asynchronous serial communication.

When you build an existing design you have no choice but to follow it’s choice of clocking,
but for your own first experiment you could use a ’low cost’ clock: INTRC for a 16F628 (4
MHz), RC for a 16F87x (100pF, 10k => 0.877 MHz). Note that the RC characterization data
(relation between RC values and frequency) for the 16F877 is not in the 16F877 data sheet
but in section 31.3.3 of the midrange reference manual. But immediately after the ’first step’
I recommend to use a crystal, and maybe use other clock options later when this fits the
design better. Using the 8-pin 12C509 and 12Fxxx with an external crystal makes sense only
when the remaining 4 IO pins are sufficient, and the increased accuracy of a crystal over the
internal oscillator is required (or the full speed of 20 MHz is needed).

Select a PIC 2–9

Chapter 3

Using your PIC

So now you have a PIC and a programmer, and you have selected a programming language.
It is time to build a target circuit. When you are the bold type you could warm up your
soldering iron, to build your first target circuit on perfboard or even on a home-made PCB.
But if you are like me you will make some mistakes and you will want to be able to make
quick modifications, so I suggest to use a solderless breadboard.

3.1 Breadboard and other hardware
A solderless breadboard is a piece of plastic with a large number of holes in which you can
plug your components. Beneath the holes are metal springs that secure the leads of the
components and connect them together.
The breadboards that I use most often consist of a mid-section where you put the components
and two double power strips on both sides of the mid-section. In the mid-section the strings
are connected vertically, in the power strips horizontally (see picture). Beware that the power
strips often (but not always) have a break in the middle, and that the top and bottom power
strips are not connected.

I prepare my breadboards like shown below:

• the breaks in the power strips are bridged

• the top and bottom power strips are connected

• a diode will short an accidentally reversed power

• a LED shows the presence of power

• a few capacitors (2x 100uF, 2x 0.1uF) provide power decoupling

You will need some power for your circuit, preferably a stable +5 Volt. If you don’t have a real
power supply I recommend using a wall-wart (a big line plug with a transformer) plus an 7805.
The circuit is dead simple, see figure, and will work for all wall-warts that provide either 8 ..
24 Volt AC or 12 .. 32 Volt DC. A 7805 is both short-circuit and thermally protected, so it is
difficult to damage. If you want to draw substantial current from this circuit you should use
a wall wart with a lower output voltage, and put a big heat sink on the 7805.

Using your PIC 3–1

Other options to obtain power are:

• a PC game port or USB port (your PC might be damaged when you draw too much
current!)

• a 9 Volt battery + an 7805 (be sure to disconnect the battery between experiments,
otherwise the 7805 will drain the battery quickly)

• a 4.5 Volt battery (not for the 16F84 - the one without A -, and at most at 10 MHz,
preferably at 4 MHz or lower)

3.2 The PIC architecture
When you program your PICs using a High Level language the compiler will isolate you from
most details of the PIC architecture, but some details will shine through. So even when you
use a compiler it is still a good idea to have some knowledge of the PIC architecture, if only
to know what kind of constructs can be translated compactly to PIC instructions and which
can’t.

The PIC architecture is a bit peculiar, even (or especially) for people who are familiar with
more mainstream architectures.

The PIC uses a Harvard architecture, which means that the code and data spaces are
completely separate. Most other CPU’s use the VonNeuman architecture, where code and data
share a common address range. On a PIC code address 0 and data address 0 have nothing to
do with each other, and can even address a different number of bits. The addressable element
in the PIC data space is a byte (8 bits), the addressable element in the PIC code space is the
instruction, which is 12 bits on the 12-bit cores (for instance the 12C509), 14 bit on the 14-bit
cores (16x84, 16F628, 16F87x), and 16 bit on the 16-bit cores (18Fxxx).

A frequently asked question is ’how can I read (or write) the instruction at address X?’. For
12-bit and most 14-bit core PICs the answer is simple: you can’t. The 16F87x and 18Fxxx
PICs have a special procedure (using registers mapped in the data space) to read from and
even write to the code space. On the SX reading the code space is possible with a similar
mechanism, but writing is not.

On the 12-bit and 14-bit core PICs the control instructions that specify a new code location
(goto and call) contain only a limited number of bits for this new location. On the PICs that
have a code space that is larger than this number of bits can specify (512 instructions on the
12-bit cores, 2048 instructions on the 14-bit cores) a called code is used to get the remaining
(higher) bits. The essence is that a few bits are taken from a fixed location (in the status
register). Before a goto or call you must make sure that these bits are set appropriately, or
your goto/call will lead your program to an unexpected location (often referred to as never-
never land). The table below shows how the target address is constructed. The colons (:)
mean that the various bits are concatenated. Note that there are three different cases: goto,
call and modification of PCL (explained later).

3–2 Using your PIC

Table 3–1: Constructing a target address

Operation 12-bit core and SX 14-bit core

new location after a goto [2/3 bits from status register]
: [9 bits from instruction]

[3 bits from PCH]
: [11 bits from instruction]

new location after a call [2/3 bits from status register]
: [one 0 bit]
: [8 bits from instruction]

[3 bits from PCH]
: [11 bits from instruction]

new location after
modification of PCL

[3 bits from status register]
: [one 0 bit]
: [8 (modified) PCL bits]

[5 bits from PCH]
: [8 (modified) PCL bits]

A 12-bit core PIC has up to 2 page selection bits in STATUS, an SX up to 3 (the exact number
depends on the amount of code space in the particular chip).

Note one strange detail: on the 12-bit core (and SX) one bit of the new code address after a call
or modification of PCL is always 0. This means that only half the code space is accessible for
these actions, and the accessible and inaccessible regions alternate. This complicates jump
tables, value tables and subroutine calls.

From the table you can read that:

• As long as your program uses only the first 256 instructions you don’t have to worry about
code paging at all.

• For the 14-bit cores, and when you don’t touch the PCL, you don’t have to worry about
code paging when your program uses only the first 2k (2048) instructions. 14-bit core
PICs with 2k code or less include 16x84, 16F62x, 16F870, 16F871, and 16F872.

Turning this logic around: when you have just added a small amount of code to a perfectly
working program and it suddenly starts acting weird if might be a good idea to check whether
the size of your code has crossed a ’magic border’ and you must start paying attention to code
paging.

When the size of your code increases above the no-worries limit the simple way to keep your
program working for jumps and calls is to set the page bits before each (attempted) jump
or call. MPASM provides the pagesel macro to do this. The SX chips have a special page
instruction that sets the page selection bits. Note that for a conditional jump or call the
pagesel (or page) must be put before the skip:

pagesel destination ; set page bits for ’destination’
skpnz ; skip if not zero
goto destination ; jump

The GOTO and CALL instructions on the 16-bit cores use two 16-bit ’instructions’ to specify
a 20 bit target address, so there is no need for code paging. There are also relative call and
jump (branch) instructions that provide an 8 or 11 bit offset.

The PIC documentation calls the data space ’file registers’. You could interpret this as stating
that the data RAM (file) and special purpose hardware (registers) are mapped in the same
address space.

Using your PIC 3–3

Just like the code space the PIC data space is larger than can be specified in an instruction.
The same trick as for the code space is used: some bits of the effective address are taken from
a fixed location, and the programmer must make sure that those bits are set appropriately,
but in this case the mechanism is called register file banking. The table below shows how
the effective data address is constructed.

Indirect addressing is used when an address must be calculated at run time. The calculated
address is placed in dedicated special function registers, and another special function register
can now be used as if it were the addressed memory location.

Table 3–2: Direct v.s Inderect addressing

Addressing mode 12-bit core and SX 14-bit core 16-bit core

effective direct
(instruction-specified)
address

[2/3 bits from status
register]
: [5 bits from instruction]

[3 bits from status
register]
: [7 bits from instruction]

[4 bits from BSR]
: [9 bits from
instruction]
note below

effective indirect
(FSR) address

[7/8 bits from FSR] [1 bits from STATUS]
: [8 bits from FSR]

three FSRnH :
FSRnL register
pairs

The SX48/52 use a somewhat different data addressing scheme. As I have no experience with
these chips so I won’t attempt to describe it.

The data addressing scheme shown so far has a big problem: to move data from one bank
to another a LOT of bank selection instructions must be used. To reduce this problem some
addresses ’map to’ the corresponding address in bank 0 (or sometimes to another bank).
Another way to say the same thing is that some registers appear at more than one address.
The registers that map to all banks are called shared. The shared data RAM is very
convenient for the assembler programmer, but there are only a very limited amount of it
(typically 8 address on the 12-bit cores and 16 addresses on the 14-bit cores, and some PICs
have no shared RAM at all).

The 16-bit core PICs uses the same mechanism but the data sheet describes it differently:
one bit from the address provided by the instruction selects either the bank selected by the
BSR, or a fixed bank that contains 256 RAM locations and 256 special function registers (on
most 16-bit core PICs this includes all relevant special function registers).

When your program does not use too much data the most convenient data banking strategy
is to keep the bank selection bits pointing to bank 0, only changing these bits when you
must access a (probably special function) register in another bank, and then set the bank bits
back immediately afterwards. Use the RAM in the higher data banks (mostly or only) using
indirect addressing. MPASM provides the banksel macro to set the bank bits. The bankisel
macro sets the bank bits for indirect addressing. To use this macro you must make sure that
the whole data array that you are going to access is within one bank.

3–4 Using your PIC

The PICs data memory banking with fragmented pieces of RAM makes accessing an array
that is larger than the amount of contiguous RAM very tedious. For each access you will have
to translate the array index to the correct bank bits and the address within the bank, and
the irregular layout of the banks make it impossible to do this with just a few instructions.

The 12-bit and 14-bit core PICs have a primitive stack that is used for just one purpose:
saving and storing (code) return addresses. The 12-bit cores have a 2-level stack, the 14-bit
cores have an 8-level stack. The SX, which is in most aspects a clone of the 12-bit PICs, can
be configured to have a 2-level stack (for maximum compatibility) or an 8-level stack (much
more useful). For pushing the stack behaves like an N-entry book shelve: when you push a
new address onto the stack (let’s say at the left end), the oldest address (at the right end)
falls off and is lost forever. For popping there appears to be a copying machine at the right
end: when you take (pop) the leftmost book from the shelve the rightmost book is duplicated.
Hence there are always exactly N addresses in the stack.

The 16-bit core PICs have a 32-entry stack that can be read from and written to. This means
that these chips can support a real (preemptive, non-cooperative) multi tasking kernel, which
is not possible on the 12-bit and 14-bit PICs.

Some stack-related FAQs:

• How can I clear the stack?
There are clever methods to do so, but unless you are doing something very very clever
there is no need to initialize or clear the stack. And if you are doing something that clever
you will find clearing the stack a triviality.

• Is it bad to overflow the stack?
No. But it is bad to underflow the stack, because that means that you are (probably)
returning to somewhere you did not intend to return to. In most cases overflowing the
stack will mean that you will underflow it later, but not always. Suppose you have a
main program that calls a function, and the function will never return because it loops
forever. The return address of that call will never be used, so no harm is done when it is
lost. In assembler you could of course have used a jump instead of a call, but in a high
level language that is probably not possible.

• Can I use the N stack levels for call/return?
On the 14-bit cores the stack is used for call/return AND for interrupts, so when you
use interrupts only N-1 levels are available for call/retrurn. On the 12-bit cores there
is no interrupt, so the 2 stack levels are available for call/return. On the SX there is a
dedicated location for storing the interrupt return address, so the 2 or 8 stack levels are
available for call/return, whether interrupts are used or not. On the 16-bit cores the stack
is accessible, so you could enlarge the stack by saving and restoring stack entries.

• How can I push/pop data?
You can’t. Parameters must be passed to subroutines in RAM. On the 16-bit core PICs
you can push and pop data, but using this mechanism to pass parameters is not effective.

• How do I know that my program does not overflow the stack?
Most high level languages will warn you. You can use the simulator build into MPLAB
to run your program. Or you can just use your own intelligence: construct the call tree
of your program, which is a good idea anyway.

Using your PIC 3–5

• My program overflows the stack. What can I do?
First make a call tree of your program to find out the problem area(s). Now determine
if the problem is real (see explanation about never-returning functions). If there are real
problems you could :

• Change your program structure to use less call levels

• Inline some subroutines

• Use goto/goto instead of call/return for subroutines that are called only once

When this does not help there is the advanced trick of the computed return:

• Before the call set a variable to indicate the return point

• Use a goto instead of a call

• Instead of the return use a computed goto or one or more if ’s to jump to the correct
return point

When you don’t understand this very short description you should probably not use this
technique. Note that some compilers will use this technique automagically.

Once you have mastered the paging and banking the actual PIC instruction set is very simple
to understand. The processor is byte (8 bit at a time) oriented. There is one special register,
called the W register.

The diadic (two-operand) arithmetic instructions have two forms. The first form operates on
a memory location specified in the instruction, use the W register as second operand, and can
store the result either in the memory location or in W. The second form operates on an 8-bit
constant, uses the W register as second operand, and stores the result in the W register. The
arithmetic operations that can be done in both forms are add, subtract, and, or and xor. Note
that W is the second operand, not the first. This makes a difference for subtraction only, but
has confused many people.

In the tables a represents an address, [a] the (byte) content of that address, n a (byte)
literal, b a 3-bit literal (a bit number, 0..7), and X : b represents bit b of X.

Table 3–3: Diadic (two-operand) arithmetic instructions

Instruction
mnemonic for

notes

W = [a] op W [a] = [a] op W W = n op W

Add ADDWF a, W ADDWF a, F ADDLW n affects Z, C, DC

Subtract SUBWF a, W SUBWF a, F SUBLW n affects Z, C, DC

And ANDWF a, W ANDWF a, F ANDLW n affects Z

Or IORWF a, W IORWF a, F IORLW n affects Z

Xor XORWF a, W XORWF a, F XORLW n affects Z

Monadic (one-operand) calculations can only be done in the first form: increment, decrement,
rotate left, rotate right, swap nibbles, and (!) move.

3–6 Using your PIC

Table 3–4: Monadic (one-operand) instructions

Instruction
mnemonic for

notes

W := f([a]) [a] = f([a])

Increment INCF a, W INCF a, F affects Z

Decrement DECF a, W DECF a, F affects Z

Rotate right RRF a, W RRF a, F involves C

Rotate left RLF a, W RLF a, F involves C

Swap nibbles SWAPF a, W SWAPF a, F affects no flags

Move MOVF a, W MOVF a, F affects Z

There is a status register that reflects the zero, carry and digit-carry status of the last
calculation. Add and subtract affect all three flags. Rotate involves the carry bit. The others
affect only the zero flag, except swap nibbles which affects no flag at all. For subtracting the
carry flag is set when no carry occurs and cleared when a carry occurs, so it is often referred
to as the carry - /borrow flag: carry refers to the carry for addition, /borrow refers to the
negated (the /) borrow for subtraction.

There is an instruction that loads the W register with a literal, and an instruction that
saves the W register to a memory location. These instructions do not affect the flags. The
instruction that loads the W register from a memory location has already been listed as an
arithmetic instruction instruction: it affects the zero flag, and its destination can be either
the W registers or (!) the memory location.

Table 3–5: Move instructions

Operation Mnemonic Notes

W := n MOVLW n -

[a] := W MOVWF a -

W := [a] MOVF a, W affects Z

There are instructions that clear the W register or a memory location. Both set the zero
flag.

Table 3–6: Clear instructions

Operation Mnemonic Notes

W := 0 CLRW sets Z

[a] := 0 CLRF a sets Z

There are bit set and bit clear instructions set or clear a single bit in a memory location. Note
that both the memory location and the affected bit within the memory location are encoded in

Using your PIC 3–7

the instruction. For the memory location indirect addressing can be used to affect a calculated
address, but there is no one-instruction way to affect a calculated bit within a byte.

Table 3–7: Bit set/clear instructions

Operation Mnemonic

[a] . b = 1 BSF a, b

[a] . b = 0 BCF a, b

There are bit-test-and-skip instructions that skip the next instruction when a single bit in
a memory location is either clear or set. A strange omission is that the W register is not
memory-mapped, so testing a bit in the result that is in W is more complicated than testing
a bit somewhere in memory. The status register is memory-mapped (and mapped into all
banks) so the bit-test-and-skip instructions can use the status flags. As for the bit set and
clear instructions both the address and the bit are constants encoded in the instruction.

Table 3–8: Bit test-and-skip instructions

Operation Mnemonic

skip next instruction when bit N
at address A is set

BTFSS A, N

skip next instruction when bit N
at address A is clear

BTFSC A, N

There are special increment and decrement instructions that look a lot like the increment
and decrement already described, but these forms do not affect the zero flag, but skip the
next instruction when the result is zero.

Table 3–9: Inc- and Dec-and-skip instructions

Operation Mnemonic

[A] := [A] - 1 or
W := [A] - 1
skip next instruction when result is 0

DECFSZ a, F
DECFSZ a, W

[A] := [A] + 1 or
W := [A] + 1
skip next instruction when result is 0

INCFSZ a, F
INCFSZ a, W

For control there are unconditional goto and call instructions, and a return to terminate a
call. These can be combined with a bit-test-and-skip instruction to create conditional flow of
control.

[goto call return retlw sleep crlwdt retfie mpasm specials skpz skpnz]

3–8 Using your PIC

The PIC instruction set itself does not support indirection (the use of a calculated address).
Instead two memory mapped registers are used: the FSR register acts as pointer, the INDF
’register’ acts as if it were the registers who’s address is currently in FSR. This is roughly
equivalent to indirection as it is available on other architectures, but with only a single
pointer register.

[calculated jumps]

The instruction set has some funny irregularities, that can either be seen as annoying design
mistakes or as opportunities to write clever code. The add and subtract instructions do not
take the carry into account, so multi-byte arithmetic is cumbersome (but there is no carry to
worry about when adding or subtracting the first - or only - byte).

The 12-bit core lacks a few instructions compared to the 14-bit core:

• There is no return instruction, only a return-and-load-W.

• There are no interrupts, so there is no return-from-interrupt.

• There are no literal forms of add and subtract.

The PIC instruction set can both be effective and powerful, resulting in very compact and
fast code, or cumbersome and deficient, resulting in bloated and slow code. It all depends.
The PIC instruction set is very good at the bit-manipulations and byte-sized arithmetic that
are typical for small controller applications. The problems arrive when either multi-byte
arithmetic is needed or the code and/or data is so large that the paging and banking gets in
the way. This typically happens when more complex calculations or larger data sets (both
comparatively speaking) are required. The use of a compiler will often shield you from the
ugly details, but it can not hide the large amounts of code required to do things that can
be done with much less code on more mainstream architectures. On the other hand good
compilers will take advantage of the power of the PIC instruction set for simple operations.

To illustrate the weak side of the PIC architecture imagine an application that requires
random access to a 120-byte array. There are PICs that have 120 and more bytes of RAM
data, but this is spread over four memory banks, none of which contains 120 bytes of data.
So the data access routine has to figure out, for each byte, in which bank the byte is, set
the banking bits appropriately, and to the address according to the starting address of the
data fragment in that bank. Store the adjusted address in FSR and the byte can be accessed
in INDF. But to access the next random byte this whole procedure has to be done again.
Contrast this with the very simple way in which a small array that fits in one bank can be
accessed: set the bank bits, add the start address of the array within the bank and the index,
move the result to FSR and use the byte in INDF. To access the next byte just change the
FSR accordingly.

When you argue that you will use C and be shielded from these details you might be in for
an unpleasant surprise: most compilers do not support arrays spread over multiple banks
(some don’t even support banking at all), and those who do will still produce the same large
code that you would produce by hand, slowing down your application.

My conclusion about the PIC architecture is that for PICs the relation between ’application
complexity’ and ’engineering effort’ is much less smooth than for more regular architectures
(especially due to paging and banking). This means that PICs will often do well (read: as
good as or better than other architecture) for smaller applications, but do not so well (read:
worse than other architectures) for larger applications. But a lot of experience is needed to

Using your PIC 3–9

rate an application’s complexity before applying this rule, it is certainly not just the amount
of code, data or MIPSs. [FSR maps?] [need more on 18F instruction set]

3.3 Your first program
Your first application should definitely be a blinking LED (the microcontroller equivalent of
’hello world’). When the LED blinks you have proof that your programmer and target circuit
work OK. This blink-a-LED is also your fall-back when nothing seems to work and you start
suspecting the PIC, the clock input, your power supply, programmer etc, your sanity, etc.

Blink-A-LED programs for the flash PICs that I have are available on my http://www.voti.nl/wisp628
Wisp628 page.

3.4 16x84 to 16F628
In magazines and on the internet you can find lots of designs that use the now obsolete 16c84,
16F84 or 16F84a. At the moment you can still buy a 16F84a, but the fact that this chip is
now more expensive than the more capable 16F628 is a clear indication that it is nearing its
retirement. So you might find yourself facing the task of porting an existing 16x84 design to
the 16F628. This requires some modifications and re-compilation or assembly of the program.
Here we deal only with code written in assembler, which will be the most common case.

The programming model of the 16F628 is in most aspects upwards compatible to the 16x84
(more program memory, more RAM data memory, more EEPROM data memory, more clock
options, more I/O options). The differences between the 16x84’s and the 16F628 that must
be taken into account are:

• The Vcc range for 16F628 stops at 5.5 Volt, while older PICs could handle up to 6.0 Volt.
When the circuit really requires working above 5.5 Volt you will have to adapt the circuit
or stick with the original PIC. My original Wisp programmer is an example of such a
problematic circuit: it varies the Vcc of the PIC over a range that includes 6.0 Volt. Bad
luck, moving to a 16F628 requires a redesign.

• A topic that is a bit fuzzy in the PIC data sheets is the maximum positive voltage that RA4
(open collector) can tolerate. For old PICs this parameter is not documented, but I heard
from a Microchip guy that it could handle up to around 15 Volt. The 16F628 data sheet
mentions 14 Volt as absolute maximum, 8.5 Volt operational. I am not sure whether this
is a difference between 16x84’s and the 16F628 or just a (conservative) documentation
update, but be aware that there could be a problem.

• The configuration options (configuration fuses word) is very different for 16x84 and
16F628. In most cases the configuration word is specified as the sum of a set of pre-
defined constant, so re-assembling for a 16F628 will produce a correct configuration. But
when the configuration word is specified as a literal you will have to unravel it to its
symbolic components.

• The address of the special function registers on the 16x84 and the 16F628 are quite
different. When the program uses the symbolic names defined in the standard include
files this will be taken care off automatically, but when the SFR addresses are coded
explicitly you will have to do the translation by hand (and it might be a good idea to
translate to the symbolic names). [Q: any SFRs that are now in a different bank?]

3–10 Using your PIC

• On a 16f628 the reset condition for port A is analog mode, which does not exist on a
16x84. To make port A behave as on a 16x84 insert the following code:

movlw 7
movwf CMCON

Using your PIC 3–11

Chapter 4

Tips and pitfalls

4.1 OTP / Windowed PICs

• Some PICs (12C509, 12Fxxx) have a calibration value in the highest code location. When
the internal RC oscillator is used (which will often be the case) this constant (actually a
movlw instruction) is used to get the best possible accuracy of the clock. A windowed PIC
has the calibration constant stored at the same location, but erasing the chip will also
erase this constant. Use a programmer to read the calibration value and write it down,
the bottom of the chip might be a good location.

• The code protection of OTP PICs is controlled by an EPROM cell, just like the executable
code. To prevent erasing the code protection bit before the code itself is fully erased
Microchip has assured that this bit is either not erasable or very hard to erase. So when
the code protection bit of a windowed PIC is set you are either one windowed PIC down,
or it will have to stay in the eraser for a very long time. Advice: never enable code
protection while developing!

• Light through the window of a windowed (/JW) PIC can affect the (initial) state of the
PICs RAM. This can cause differences in behavior between the windowed (development)
and OTP (production) PICs. Advice: cover the window with something that is REALLY
opaque, and/or make sure you initialize all variables.

4.2 IO

• Most PIC IO pins can be used either as input or as output, and when used as output
can both source and sink current. Bit some pins can be used only as input, for instance
MCLR on a 16F628 configured for internal reset, and some pins can only sink current
(open collector / open drain), this is the case with RA4 on most PICs.

Tips and pitfalls 4–1

• On PICs that support LVP programming the LVP pin should be tied to Gnd during HVP
programming, even when LVP is disabled. Whether HVP will fail when this is not done
is unsure and seems to depend both on the PIC type and on the revision, but the safest
bet is to tie LVP down. Note that a different pin is used for LVP on the 16F628 (RB4),
16F87x (RB3) and the 18fxxx (RB5). When LVP is enabled the LVP pin must of course
always be tied low during normal operation of the PIC.

• On 14-bit core chips that have analog capabilities the pins that can have an analog
function default to that analog function. This is not a coincidence: when a digital IO
pin is tied to a voltage somewhere between high and low this can cause the internal
circuits to drawn much more current than when IO pin levels are well-defined. A digital
signal on an analog pin is no problem, but the reverse is, so the pins default to analog.
But this means that for digital use such pins must first be configured for digital use! This
applies especially to port a on the 16F628 and 16F87x.

• Contrary to the analog functions, which are generally enabled by default, most digital
special IO functions (UART, I2C, PWM etc) must be enabled before they can be used, and
often the pin must also be configured for the appropriate direction. When using a special
digital function it is advised to read both the section on those functions, and the section
on the IO port and pin.

• For some purposes (I2C for instance) open-collector (or open-drain) IO pins are needed.
Most PICs have one such pin (RA4), but other pins can be used in this mode by writing a
0 to the pin itself and then writing the desired IO state to the tris (direction) register. A 0
in the tris register happens to set the bit to output, so writing to the tris mimics writing
to an open-collector output pin.

• A 16F628 does not have an A/D converter, but when all you want is to control the speed
of an application you can use the ER (external resistor) clock configuration and use
a potentiometer. The data sheets do not specify the relationship between the resistor
value and the clock frequency, but measurements indicate that 10k gives around 8 MHz,
dropping roughly linearly to 80 kHz for 2M.

• Some PIC data sheets mention a TRIS instruction and warn that this instruction ’should
not be used for compatibility with future products’. Although not using the TRIS
instruction might be a good idea when you want maximum portability, it is a useful
instruction (it can avoid some bank switching), it is still supported on most 14-bit core
flash PICs (it even works on th 16F87x which do not document it), and it will of course
continue to be supported on all PIC types that currently support it. So decide for yourself
whether to use or avoid it.

• PIC IO pins have a primitive protection, consisting of diodes to Vcc and Gnd. These
diodes are certainly not meant to carry significant currently, and it is a continuing debate
whether they are designed to carry any current at all during normal operation of the
chip. A funny consequence of these diodes is that when the power to a PIC is removed
but one of its inputs is still high, it will be powered via the protection diode! This is not a
guaranteed operation, but it can ruin an attempt to reset the PIC by removing the power.

4–2 Tips and pitfalls

• PICs use a funny IO architecture where a reading of a pin always returns the current
external level of the pin, which can be different from the last value written to a pin, even
when the pin is set as output, for two reasons:

• PIC instructions execute in a pipeline, and for IO pins the read part of the next
instruction takes place before the writing of the previous instruction.

• The load on the pin can be too high for it to reach its ’desired’ level. This can easily
happen (for a short time) when the load is capacitive.

All PIC byte instructions that modify some bits in a byte are read-modify-write instruc-
tions, so when two consecutive BCF (bit clear) instructions on an IO port are executed
the second instruction can ruin the effect of the first because of the first reason. Actu-
ally a BCF instruction (and a lot of other instructions, like INCF) on a port can ruin
any previous setting of that port because of the second reason! It should be noted that
the first reason occurs far more often and can be avoided by placing a NOP or another
instruction between any two read-modify-write instructions on the same IO port. But to
really avoid all problems it is advised to allocate a separate register, do manipulations on
that register, and copy it to the port register after each change (shadow register).

• Microchip calls the (only) IO port of the 8-pin PICs GP (General Purpose). For consistency
with other PICs it might be easier to think of this port as port b.

4.3 Assembly

• 12-bit core PICs (for instance 12C509) do not have a RET instruction. Yet the assembler
accepts the RET mnemonic, and translates it as ’RETLW 0’, which clears the W register.
This can be an unpleasant surprise to a programmer who is used to a 14-bit core, where
the W register can be used to return a calculated value.

• Most instructions that operate on a file register can leave the result either in the same
file register or in the W register. This is indicated by ’,f ’ or ’,w’. But actually f and w are
just pre-defined constants, so the assembler accepts strange things like ’INCF w,w’ which
is interpreted as ’INCF 0,W’. When the ’,f ’ or ’,w’ is omitted the assembler uses a default.
I always forget what it is, so it is advised always to specify the target.

• A radix (base) of a literal without an explicit radix specification is determined by an
assembler option! Hence the only way to make sure that someone else can assemble your
program (and get the same result) is to specify an explicit radix for each literal. To make
sure that you have done so you could assemble with both (hex and decimal) defaults and
check that the produced .hex file is the same.

• Some things that appear to be PIC assembler instructions are actually macro’s that can
generated a number of instructions, not necessarily one. Funny things will happen when
you try to skip such a macro-instruction: when it has generated more than one instruction
you will skip only the first, when it has generated zero instructions you will skip the next
instruction!
[list those multi-instruction macro’s]

Tips and pitfalls 4–3

4.4 Documentation

• The information about a particular chip is spread over a number of documents:

• the data sheet of the chip (or a related set of chips) itself

• (for the 14-bit core chips) the midrange reference manual

• a programming document, describing how a programmer must handle the chip (not
interesting unless you want to design your own programmer)

• The data sheet electrical characteristics contains a section called absolute maximum
ratings. These figures indicate the circumstances which a chip will survive. Don’t
interpret these absolute maximum ratings as normal operating conditions.

• The electrical characteristics document the circumstances for which the chip is guaranteed
to work. This does not mean that it necessarily won’t work when one or more of these
characteristics are violated, just that the manufacturer does not guarantee it. For an one-
off hobby project you could exceed some characteristics, test your circuit, find it working,
and use it. For a very large production run you could do the same, but with much
more testing. In between these extremes I would advice you to keep well within all
characteristics.

• Most PICs are sold in two speed grades: the maximum speed (currently often -20 for 20
MHz), and a ’lower grade’, often -04 for 4 MHz. The 4 MHz version is often a bit cheaper.
These two grades of PICs are made in the same process, using the same design, so one
could reason that having two grades is just a marketing trick. All people I have heard
of that have tried to run a -04 at the higher clock speed have reported success. On the
other hand none of them can have applied the same tests Microchip will do on their chips
(which alone might account for the price difference). So on the question ’can I use my
16F628-04 at 20 MHz’: if you are a hobbyist: you are free to do so, and the chance that
it will work OK (especially at 5.0 Volt Vcc and room temperature) is very high. There are
reports of successful PIC over-clocking by a factor of almost 2 (a 16F84-10 at 18 MHz).
But using a -04 at 20 MHz is still operating outside the guaranteed parameters, so for a
professional product it should probably be avoided.

4.5 Hardware

• Put a 0.1 uF decoupling capacitor near the power connections of each chip, and a 100 uF
(or 1000 uF when larger currents are to be expected) on the breadboard. These capacitors
might not always be needed, but it is a waste (even for a hobbyist) to spend days tracking
down a problem caused by insufficient power decoupling.

• I put all my chips in a ’turned’ chip socket to avoid breaking the chips flimsy legs. Some
people have reported that when such a combo is put in a breadboard or (straight-pin)
socket that board or socket can no longer reliably accept normal chips.

• PICs are fairly robust against mistreatment, but I killed a few by applying the power
in reverse. To protect me against this mistake I put a 1N400x ’fools diode’ between the
power lines, and I always use a 7805-based power supply.

4–4 Tips and pitfalls

4.6 Various

• Like everything in the real world code protection on PICs is not absolute. The old 16c84
was used widely in pay-TV stations, so it was a favorite target for hacking and receipts for
defeating its code protection were circulating on the web. The newer PICs are reported
to be invulnerable to these (rather simple) attacks, but undoubtedly other attacks exists.
There are even companies that offer to retrieve the code from any protected PIC, but such
services are not cheap and often require more than one PIC. The best (and probably only)
way to protect your code from piracy is to make sure that it is not worth the effort by
keeping your price low.

• A surprisingly common mistake made by PIC beginners is to enable the watchdog. This
will let the program run for a short time, then the watchdog will trigger and the chip
resets. When the program is ’blink-a-LED’ it might even seem to work correctly, although
the blinking will probably be irregular and/or at an unexpected frequency. Note that the
configuration setting (which contains the watchdog enable bit) should be specified in the
source (assembler, C, Jal, ...) and that the programmer should load this setting. But
some programmers ignore this setting and require the user to set the configuration in the
programmer software.

• When permanent (internal or external EEPROM) storage is used care should be taken
that the data is not corrupted in a low Vcc (brownout) situation, which will often occur
when power is removed and the voltage on the main capacitor falls slowly. The remedy
to this problem is a brown-out protection, either internally or externally. The newer PICs
have an internal brown-out protection (but it must be enabled in the configuration!).
Brownout protection should also be used when it is for other reasons unacceptable that
the PIC might behave erratically during power up and/or power down.

• PICs are generally quite sturdy and can still be functional after a lot of punishment.
There is a story of a windowed PIC that glowed softly due to a high current but worked
OK after the current was removed. But two things that can easily destroy a PIC are:

• reverse Gnd/Vcc polarity

• a high current into the MCLR pin The first can be avoided by including a ’fools diode’
(between Gnd and Vcc) in every design, or even better: in the socket in which you
put your PIC to prevent damage to its pins. The second can be avoided by putting
a small resistor (100 ohm) in series with the MCLR pin when a capacitor is used to
provide a reset delay.

Tips and pitfalls 4–5

Chapter 5

DIP Pinouts

Note that the special functions shown for a pin might not be available for all PIC types for
which a pinout applies. When you are soldering a breadboard and hence looking at the bottom
of the chip you might find the bottom pinouts handy.

5.1 8-pin SDIP PIC’s
+---+--+---+

VCC |1 +--+ 8| GND
OSC1,X1,GP5 |2 7| GP0,CIN+,PGD
OSC2,X1,GP5 |3 6| GP1,CIN-,PGC

VPP,/MCLR,GP3 |4 5| GP2,T0CKI,INT,COUT
+----------+
12Cxxx, 12Fxxx

+----------+
VPP,/MCLR,GP3 |4 5| GP2,T0CKI,INT,COUT
OSC2,X1,GP5 |3 6| GP1,CIN-,PGC
OSC1,X1,GP5 |2 7| GP0,CIN+,PGD

VCC |1 8| GND
+----------+

12Cxxx, 12Fxxx bottom

DIP Pinouts 5–1

5.2 18-pin SDIP PIC’s

+---+--+---+
Vref,AN2,RA2 |1 +--+ 18| RA1,AN1
CMP1,AN3,RA3 |2 17| RA0,AN0

CMP2,TOCKI,RA4 |3 16| RA7,OSC1,CLKIN
VPP,/MCLR,RA5 |4 15| RA6,OSC2,CLKOUT

GND |5 14| VCC
INT,RB0 |6 13| RB7,T1OSI,PGD

RX,DT,RB1 |7 12| RB6,T1OSO,T1CKI,PGC
TX,CK,RB2 |8 11| RB5
CCP1,RB3 |9 10| RB4,(LVP 16F628)

+----------+
16x84(A), 16F62x

+----------+
CCP1,RB3 |9 10| RB4,(LVP 16F628)
TX,CK,RB2 |8 11| RB5
RX,DT,RB1 |7 12| RB6,T1OSO,T1CKI,PGC
INT,RB0 |6 13| RB7,T1OSI,PGD

GND |5 14| VCC
VPP,/MCLR,RA5 |4 15| RA6,OSC2,CLKOUT
CMP2,TOCKI,RA4 |3 16| RA7,OSC1,CLKIN
CMP1,AN3,RA3 |2 17| RA0,AN0
Vref,AN2,RA2 |1 18| RA1,AN1

+----------+
16x84(A), 16F62x bottom

5–2 DIP Pinouts

5.3 28-pin SDIP PIC’s

+---+--+---+
VPP,/MCLR |1 +--+ 28| RB7,PGD
AN0,RA0 |2 27| RB6,PGC
AN1,RA1 |3 26| RB5,(LVP 18F)

Vref-,AN2,RA2 |4 25| RB4
Vref+,AN3,RA3 |5 24| RB3,(LVP 16F)

TOCKI,RA4 |6 23| RB2
/SS,AN4,RA5 |7 22| RB1

VCC |8 21| RB0,INT
CLKIN,OSC1 |9 20| GND
CLKOUT,OSC2 |10 19| VCC

T1CKI,T1OSO,RC0 |11 18| RC7,RX,DT
CCP2,T1OSI,RC1 |12 17| RC6,TX,CK

CCP1,RC2 |13 16| RC5,SDO
SCK,SCL,RC3 |14 15| RC4,SDI,SDA

+----------+
16F870, 16F872, 16F876

18F242, 18F252

+----------+
SCK,SCL,RC3 |14 15| RC4,SDI,SDA

CCP1,RC2 |13 16| RC5,SDO
CCP2,T1OSI,RC1 |12 17| RC6,TX,CK
T1CKI,T1OSO,RC0 |11 18| RC7,RX,DT

CLKOUT,OSC2 |10 19| VCC
CLKIN,OSC1 |9 20| GND

VCC |8 21| RB0,INT
/SS,AN4,RA5 |7 22| RB1
TOCKI,RA4 |6 23| RB2

Vref+,AN3,RA3 |5 24| RB3,(LVP 16F)
Vref-,AN2,RA2 |4 25| RB4

AN1,RA1 |3 26| RB5,(LVP 18F)
AN0,RA0 |2 27| RB6,PGC

VPP,/MCLR |1 28| RB7,PGD
+----------+

16F870, 16F872, 16F876
18F242, 18F252 bottom

DIP Pinouts 5–3

5.4 40-pin WDIP PIC’s

+-----+--+-----+
VPP,/RST |1 +--+ 40| RB7,PGD
AN0,RA0 |2 39| RB6,PGC
AN1,RA1 |3 38| RB5,(LVP 18F)

AN2,Vref-,RA2 |4 37| RB4
AN3,Vref+,RA3 |5 36| RB3,(LVP 16F)

T0CKI,RA4 |6 35| RB2
/SS,AN4,RA5 |7 34| RB1
/RD,AN5,RE0 |8 33| RB0,INT
/WR,AN6,RE1 |9 32| VCC
/CS,AN7,RE2 |10 31| GND

VCC |11 30| RD7
GND |12 29| RD6

CLKIN,OSC1 |13 28| RD5
CLKOUT,OSC2 |14 27| RD4

T1CKI,T1OSO,RC0 |15 26| RC7,RX,DT
CCP2,T1OSI,RC1 |16 25| RC6,TX,CK

CCP1,RC2 |17 24| RC5,SDO
SCK,SCL,RC3 |18 23| RC4,SDI,SDA

RD0 |19 22| RD3
RD1 |20 21| RD2

+--------------+
16F871, 16F877, 18F252, 18F452

+--------------+
RD1 |20 21| RD2
RD0 |19 22| RD3

SCK,SCL,RC3 |18 23| RC4,SDI,SDA
CCP1,RC2 |17 24| RC5,SDO

CCP2,T1OSI,RC1 |16 25| RC6,TX,CK
T1CKI,T1OSO,RC0 |15 26| RC7,RX,DT

CLKOUT,OSC2 |14 27| RD4
CLKIN,OSC1 |13 28| RD5

GND |12 29| RD6
VCC |11 30| RD7

/CS,AN7,RE2 |10 31| GND
/WR,AN6,RE1 |9 32| VCC
/RD,AN5,RE0 |8 33| RB0,INT
/SS,AN4,RA5 |7 34| RB1
T0CKI,RA4 |6 35| RB2

AN3,Vref+,RA3 |5 36| RB3,(LVP 16F)
AN2,Vref-,RA2 |4 37| RB4

AN1,RA1 |3 38| RB5,(LVP 18F)
AN0,RA0 |2 39| RB6,PGC
VPP,/RST |1 40| RB7,PGD

+--------------+
16F871, 16F877, 18F252, 18F452 bottom

5–4 DIP Pinouts

Chapter 6

Links and references

6.1 Searching

• http://www.google.com/
Google
Definitely my best friend on the web

• http://www.findchips.com/ <lineFindchips
Looking for the availability and/or price of a chip? Try Findchips!

• http://www.xs4all.nl/~ganswijk/chipdir/
Chipdir
van Ganswijk’s Chipdir

6.2 Manufacturers

• http://www.microchip.com
Microchip
PIC microcontrollers

• http://www.ubicom.com
Ubicom
Very fast PIC clones

• http://www.atmel.com
Atmel
AVR and 8051 microcontrollers

• http://e-www.motorola.com
Motorola
68HC microcontrollers

• http://www.semiconductors.philips.com/
Philips
8051 microcontrollers, I2C peripherals, also a good site for TTL data sheets

Links and references 6–1

• http://www.parallax.com
Parallax
BASIC Stamps

• http://www.maxim-ic.com/
Dallas / Maxim
MAX232 serial interface chip, Dallas 1-wire peripherals

• http://www.national.com/
National Semiconductor
LMxxx temperature sensors

6.3 Assemblers

• http://www.microchip.com/1010/pline/tools/picmicro/devenv/mplabi/index.htm
Microchip
MPLAB, a free integrated assembly development environment.

• http://www.microchip.com/1010/pline/tools/picmicro/devenv/mplabi/index.htm
Microchip
MPLAB, a free integrated assembly development environment.

• http://gputils.sourceforge.net/
gputils
GPL PIC assembler development tools

6.4 C compilers

• http://www.geocities.com/SiliconValley/Network/3656/c2c/download.html
C2C
Pavel has sold his compilers to Kanda, but some free versions can still be downloaded
from this page

• http://www.kanda.com
Optama PIC/SX C compiler
$199, this seems to be the Kanda version of C2C

• http://www.fored.co.uk/CComp.htm
FED C
UKP 60

• http://www.bknd.com/cc5x/index.shtml
CC5X
A compiler that is described both as ’efficient’ and as ’a bit special’, a free version is
available that generates up to 1K code

• http://www.bknd.com/cc5x/index.shtml
Hi-Tech C compiler
$850, a free 21 day demo is available

6–2 Links and references

• http://www.htsoft.com/products/piclite/piclite.html
Hi-Tech PICC Lite
Free, but for 16x84 and 16f627 only (can be used for 16F628 up to 1K code)

• http://www.ccsinfo.com/picc-referall.shtml
CCS C compilers
Different compilers for the 12 and 14 bit PICs, $99 each

• http://www.bytecraft.com/impc.html
Byte Craft MPC
The ’professional’ PIC C compiler with matching price, a free demo is available which
produces only a listing file

• http://panda.bg.univ.gda.pl/~janusz/software.html
MediumC PIC-C compiler
Source of a primitive C compiler, interesting for a compiler writer only

6.5 Other compilers and interpreters

• http://www.voti.nl/jal
Jal
My own PIC language and compiler, free

• http://microengineeringlabs.com/
MEL basic compilers
’Professional’ compilers with a ditto price ($100, $250)

• http://www.pic-basic.de/
Ralf Pagel’s PIC-BASIC
EUR 45, which seems rather expensive to me

• http://www.dontronics.com/bs4.html
BS-1/4: basic interpreter
for very small programs only, free for personal use

• http://www.myke.com/mbaspg1.htm
Myke Predko’s PredBASIC87x Interpreter
A basic interpreter for the 16F877, free

• http://www.controlplus.nl/
Pascalite
A Pascal development system for PICs, they charge per target

6.6 Where to buy PICs etc

• http://www.voti.nl/shop
Voti web shop
My very own PIC shop (buy a 16F877 with WLoader!)

• http://www.phanderson.com
P.H.Anderson
PICs and much more

Links and references 6–3

• http://www.nollet.com.au
R.T.Nollet
SX PIC clones, BASIC Stamps

• http://www.dontronics.com
Dontronics
PICs, SIMMstick boards, programmers

• http://www.crownhill.co.uk
Crownhill
PICs and more

• http://www.digikey.com
Digi-Key
Wide range of components, including PICs

• http://www.mouser.com
Mouser Electronics
Wide range of components

• http://www.arrow.com
Arrow
Smaller range of components, but often cheaper than Digi_Key or Mouser

• http://www.alliedelec.com
Allied Electronics
Another mail-order shop

• http://www.jameco.com
Jameco
And yet another mail-order shop

The list prices at the big mail-order shops are often lower than at the small one-person web
shops (although sometimes only when you buy large numbers), but the big shops often charge
a large shipping + handling fee.

6.7 Where to get answers for your PIC questions

• http://www.piclist.com
piclist
THE forum for PIC users, heavy traffic (~ 100 posts/day), lots of noise, but also the source
for good answers (to good questions only..)

• http://www.piclist.com/techref/microchip/index.htm
PIC at techref
Lots of links, tricks, etc.

• the newsgroup news:comp.arch.embedded
comp.arch.embedded
or try the http://www.mailgate.org/comp/comp.arch.embedded/index.html mailgate archive.

6–4 Links and references

6.8 Some free programmer designs

• http://www.finitesite.com/d3jsys/
Trivial 16F87X LVP programmer
A typical parallel port LVP programmer

• http://www.jdm.homepage.dk/newpic.htm
JDM PIC-Programmer 2
Simple serial port programmers, the simples uses just one resistor

• http://baserv.uci.kun.nl/~smientki/Lego_Knex/Lego_electronica/PicProg/PicProgrammer_hardware.htm
Mindstorms PIC programmer
Another a simple serial port programmer

• http://www.codepuppies.com/~ben/sens/pic/sx
http://www.semis.demon.co.uk/Sx/SXmain.htm
Fluffy2 and Fluffy
The only free SX programmer designs that I know of

• The http://www.ic-prog.com/
pocket programmer
Not a simple design, but it can work stand alone (without a PC), and do production
programming (variable VCC verification).

• http://www.ic-prog.com/
ic-prog
Software that drives lots of programmers, the site also provides lots of programmer
schematics.

• http://www.lancos.com/prog.html
PonyProg serial device programmer
Like ic-prog: software that drives lots of programmers.

• http://www.voti.nl/wisp628
Wisp628
My in-circuit flash PIC programmer (also available as http://www.voti.nl/shop/products.html#K-
Wisp628kit)

• http://www.voti.nl/wloader
WLoader
My 16F87x bootloader (with links to other bootloaders).

6.9 Some commercial programmers

• http://www.microchip.com/1010/pline/tools/picmicro/program/picstart/
PICSTART Plus
The ’official’ Microchip development programmer.
Not cheap, but well integrated into MPLAB and updates are made available to support
new chips. Can be used to do in-circuit programming, but this can give problems. See
http://www.cosmodog.com/pic/picp for a Linux command-line interface.

Links and references 6–5

• http://www.microchip.com/1010/pline/tools/picmicro/icds/mplabicd/index.htm
Microchip’s MPLAB ICD
For the 16F87x chips only, but much cheaper than PICSTART, and supports in-circuit
debugging.

• http://www.picallw.com/
PICALL
Programs a wide range of PICs (including those that require parallel programming), but
also SX and Atmel AVR. The design is free, but you must by the kit (~ $70) to get the
preprogrammed chip.

• http://www.phanderson.com/warp-13.html
WARP-13 (on PHA’s pages)
~ $99, MPLAB compatible, programs PICs and Atmel AVRs.

• http://www.olimex.com/dev/
Olimex
Sells some cheap programmer kits.

6.10 Other things I found useful

• http://www.cadsoft.de
CadSoft’s Eagle circuit / PCB editor
Has a free version for limited size boards.

• http://www.lancs.ac.uk/people/cpaap/pfe
PFE
Programmers File Editor, is a free text editor, often used by programmers (including me).

• "the Art of Electronics" by Paul Horowitz and Winfield Hill
Second Edition, 1988, ISBN 0-521-37095-7
Is sort of a bible among electronics enthusiasts.

• http://www.cs.uiowa.edu/~jones/step
Jones on Stepping Motors
Is the first document to read when you want to start using stepper motors .

• http://www.idcomm.com/personal/ottosen
Richard Ottosen’s Gizmo page
Has links to the original PIC1650 documents.

• http://home.iae.nl/users/pouweha/lcd/lcd.shtml
Peer Ouwehand’s HD44780 LCD page.

6–6 Links and references

Index

A
Analog pin, 4–2

B
banksel macro, 3–4
Bootloader, 2–7
Bytecraft, 2–5

C
Calibration value, 4–1
CC5X, 2–5
Ceramic resonator, 2–9
Clock option, 2–8
Code memory paging, 3–2
Code protection, 4–1, 4–5

D
Data memory banking, 3–4
Direct addressing, 3–4

E
EEPROM, 4–5
ER in the 16F628, 2–9

F
Flash PIC’s, 2–6
Fools diod, 4–4

G
GCC, 2–5
GP port, 4–3

H
Harvard architecture, 3–2
High-Tech C, 2–5
HVP, 2–6

I
I2C, 4–2
Indirect addressing, 3–4
Internal OSC, 2–9
INTRC, 2–9

J
Jal, 2–5

L
LVP, 2–6
LVP pin, 4–2

M
Macros, 4–3
MPLAB, 2–5

O
Open-collector output pin, 4–2

P
PC game port, 3–2
PicStart, 2–8
PLL, 2–9
Power decoupling, 4–4
Power supply, 3–1
Programmers, 2–5

Index–1

Programming Language, 2–4
Protection diods, 4–2
PWM, 4–2

R
Radix, 4–3
Read-modify-write instructions, 4–3
RET instruction, 4–3

S
Self programming, 2–7
Sockets, 4–4
Speed, 4–4
Stack, 3–5
Stack overflow, 3–5

Stack push/pop, 3–5

T
TRIS instruction, 4–2

U
UART, 4–2
USB port, 3–2
UV EPROM PIC’s, 2–6

W
Warp13, 2–8
Watchdog, 4–5
Windowed PIC’s, 4–1
WLoader, 2–7

Index–2

